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Introduction

 Parallel machines are becoming quite common and affordable

 Prices of microprocessors, memory and disks have dropped 
sharply

 Recent desktop computers feature multiple processors and this 
trend is projected to accelerate

 Databases are growing increasingly large

 large volumes of transaction data are collected and stored for later 
analysis.

 multimedia objects like images are increasingly stored in 
databases

 Large-scale parallel database systems increasingly used for:

 storing large volumes of data

 processing time-consuming decision-support queries

 providing high throughput for transaction processing 
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Parallelism in Databases

 Data can be partitioned across multiple disks for parallel I/O.

 Individual relational operations (e.g., sort, join, aggregation) can be 

executed in parallel

 data can be partitioned and each processor can work 

independently on its own partition.

 Queries are expressed in high level language (SQL, translated to 

relational algebra)

 makes parallelization easier.

 Different queries can be run in parallel with each other.

Concurrency control takes care of conflicts. 

 Thus, databases naturally lend themselves to parallelism.
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I/O Parallelism

 Reduce the time required to retrieve relations from disk by partitioning

 the relations on multiple disks.

 Horizontal partitioning – tuples of a relation are divided among many disks 

such that each tuple resides on one disk.

 Partitioning techniques (number of disks = n):

Round-robin: 

Send the ith tuple inserted in the relation to disk i mod n.  

Hash partitioning:  

 Choose one or more attributes as the partitioning attributes.   

 Choose hash function h with range 0…n - 1

 Let i denote result of hash function h applied tothe partitioning attribute 

value of a tuple. Send tuple to disk i.
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I/O Parallelism (Cont.)

 Partitioning techniques (cont.):

 Range partitioning: 

 Choose an attribute as the partitioning attribute.

 A partitioning vector [vo, v1, ..., vn-2]  is chosen.

 Let v be the partitioning attribute value of a tuple. Tuples such that 

vi  vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples 

with v  vn-2 go to disk n-1.

E.g., with a partitioning vector [5,11], a tuple with partitioning attribute 

value of 2 will go to disk 0, a tuple with value 8 will go to disk 1, 

while a  tuple with value 20 will go to disk2.
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Comparison of Partitioning Techniques

 Evaluate how well partitioning techniques support the following types 

of data access:

1.Scanning the entire relation.

2.Locating a tuple associatively – point queries.

 E.g., r.A = 25.

3.Locating all tuples such that the value of a given attribute lies within a 

specified range – range queries.

 E.g.,  10  r.A < 25.
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Comparison of Partitioning Techniques (Cont.)

Round robin:

 Advantages

 Best suited for sequential scan of entire relation on each query.

 All disks have almost an equal number of tuples; retrieval work is 

thus well balanced between disks.

 Range queries are difficult to process

 No clustering -- tuples are scattered across all disks
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Comparison of Partitioning Techniques(Cont.)

Hash partitioning:

 Good for sequential access 

 Assuming hash function is good, and partitioning attributes form a 

key, tuples will be equally distributed between disks

 Retrieval work is then well balanced between disks.

 Good for point queries on partitioning attribute

 Can lookup single disk, leaving others available for answering 

other queries. 

 Index on partitioning attribute can be local to disk, making lookup 

and update more efficient

 No clustering, so difficult to answer range queries
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Comparison of Partitioning Techniques (Cont.)

 Range partitioning:

 Provides data clustering by partitioning attribute value.

 Good for sequential access

 Good for point queries on partitioning attribute: only one disk needs to 

be accessed.

 For range queries on partitioning attribute, one to a few disks may need 

to be accessed

 Remaining disks are available for other queries.

 Good if result tuples are from one to a few blocks. 

 If many blocks are to be fetched, they are still fetched from one to a 

few disks, and potential parallelism  in disk access is wasted

 Example of execution skew.
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Partitioning a Relation across Disks

 If a relation contains only a few tuples which will fit into a single disk 

block, then assign the relation to a single disk.

 Large relations are preferably partitioned across all the available 

disks.

 If a relation consists of m disk blocks and there are n disks available in 

the system, then the relation should be allocated  min(m,n) disks.
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Handling of Skew

 The distribution of tuples to disks may be skewed — that is, some 

disks have many tuples, while others may have fewer tuples.

 Types of skew:

 Attribute-value skew.

 Some values appear in the partitioning attributes of many 

tuples; all the tuples with the same value for the partitioning 

attribute end up in the same partition.

 Can occur with range-partitioning and hash-partitioning.

 Partition skew.

 With range-partitioning, badly chosen partition vector may 

assign too many tuples to some partitions and too few to 

others.

 Less likely with hash-partitioning if a good hash-function is 

chosen.
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Handling Skew in Range-Partitioning

 To create a balanced partitioning vector (assuming partitioning attribute 

forms a key of the relation):

 Sort the relation on the partitioning attribute.

 Construct the partition vector by scanning the relation in sorted order 

as follows.

 After every 1/nth of the relation has been read, the value of  the 

partitioning attribute of the next tuple is added to the partition   

vector.

 n denotes the number of partitions to be constructed.

 Duplicate entries or imbalances can result if duplicates are present in 

partitioning attributes.

 Alternative technique based on histograms used in practice
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Handling Skew using Histograms

 Balanced partitioning vector can be constructed from histogram in a 

relatively straightforward fashion

 Assume uniform distribution within each range of the histogram

 Histogram can be constructed by scanning relation, or sampling (blocks 

containing) tuples of the relation



©Silberschatz, Korth and Sudarshan21.15Database System Concepts - 5th Edition, Aug 22,  2005.

Handling Skew Using Virtual Processor 

Partitioning 
 Skew in range partitioning can be handled elegantly using virtual 

processor partitioning: 

 create a large number of partitions (say 10 to 20 times the number 

of processors)

 Assign virtual processors to partitions either in round-robin fashion 

or based on estimated cost of processing each virtual partition

 Basic idea:

 If any normal partition would have been skewed, it is very likely 

the skew is spread over a number of virtual partitions

 Skewed virtual partitions get spread across a number of 

processors, so work gets distributed evenly!
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Interquery Parallelism

 Queries/transactions execute in parallel with one another.

 Increases transaction throughput; used primarily to scale up a 

transaction processing system to support a larger number of 

transactions per second.

 Easiest form of parallelism to support, particularly in a shared-memory 

parallel database, because even sequential database systems support 

concurrent processing.

 More complicated to implement on shared-disk or shared-nothing 

architectures

 Locking and logging must be coordinated by passing messages 

between processors.

 Data in a local buffer may have been updated at another processor.

 Cache-coherency has to be maintained — reads and writes of data 

in buffer must find latest version of data.
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Cache Coherency Protocol

 Example of a cache coherency protocol for shared disk systems:

 Before reading/writing to a page, the page must be locked in 

shared/exclusive mode.

 On locking a page, the page must be read from disk

 Before unlocking a page, the page must be written to disk if it was 

modified.

 More complex protocols with fewer disk reads/writes exist.

 Cache coherency protocols for shared-nothing systems are similar. 

Each database page is assigned a home processor. Requests to fetch 

the page or write it to disk are sent to the home processor.



©Silberschatz, Korth and Sudarshan21.18Database System Concepts - 5th Edition, Aug 22,  2005.

Intraquery Parallelism

 Execution of a single query in parallel on multiple processors/disks; 

important for speeding up long-running queries.

 Two complementary forms of intraquery parallelism :

 Intraoperation Parallelism – parallelize the execution of each 

individual operation in the query.

 Interoperation Parallelism – execute the different operations in a 

query expression in parallel.

the first form scales better with increasing parallelism because

the number of tuples processed by each operation is typically more than 

the number of operations in a query
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Parallel Processing of Relational Operations

 Our discussion of parallel algorithms assumes:

 read-only queries

 shared-nothing architecture

 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1,  where disk Di is 

associated with processor Pi.

 If a processor has multiple disks they can simply simulate a single disk 

Di.

 Shared-nothing architectures can be efficiently simulated on shared-

memory and shared-disk systems.   

 Algorithms for shared-nothing systems can thus be run on shared-

memory and shared-disk systems.  

 However, some optimizations may be possible.
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Parallel Sort

Range-Partitioning Sort

 Choose processors P0, ..., Pm, where m  n -1 to do sorting.

 Create range-partition vector with m entries, on the sorting attributes

 Redistribute the relation using range partitioning

 all tuples that lie in the ith range are sent to processor Pi

 Pi stores the tuples it received temporarily on disk Di. 

 This step requires I/O and communication overhead.

 Each processor Pi sorts its partition of the relation locally.

 Each processors executes same operation (sort) in parallel with other 

processors, without any interaction with the others  (data parallelism).

 Final merge operation is trivial: range-partitioning ensures that, for 1  j  

m, the key values in processor Pi are all less than the key values in Pj.
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Parallel Sort (Cont.)

Parallel External Sort-Merge

 Assume the relation has already been partitioned among disks D0, ...,

Dn-1 (in whatever manner).

 Each processor Pi locally sorts the data on disk Di.

 The sorted runs on each processor are then merged to get the final 

sorted output.

 Parallelize the merging of sorted runs as follows:

 The sorted partitions at each processor Pi are range-partitioned 

across the processors P0, ..., Pm-1.

 Each processor Pi performs a merge on the streams as they are 

received, to get a single sorted run.

 The sorted runs on processors P0,..., Pm-1 are concatenated to get 

the final result.
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Parallel Join

 The join operation requires pairs of tuples to be tested to see if they 

satisfy the join condition, and if they do, the pair is added to the join 

output.

 Parallel join algorithms attempt to split the pairs to be tested over 

several processors.  Each processor then computes part of the join 

locally.  

 In a final step, the results from each processor can be collected 

together to produce the final result.
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Partitioned Join

 For equi-joins and natural joins, it is possible to partition the two input 

relations across the processors, and compute the join locally at each 

processor.

 Let r and s be the input relations, and we want to compute r     r.A=s.B s.

 r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and s0, 

s1, ..., sn-1.

 Can use either range partitioning or hash partitioning.

 r and s must be partitioned on their join attributes r.A and s.B), using the 

same range-partitioning vector or hash function.

 Partitions ri and si are sent to processor Pi,

 Each processor Pi locally computes ri ri.A=si.B si. Any of the standard 

join methods can be used.
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Partitioned Join (Cont.)
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Fragment-and-Replicate Join

 Partitioning not possible for some join conditions 

 e.g., non-equijoin conditions, such as r.A > s.B.

 For joins were partitioning is not applicable, parallelization  can be 
accomplished by fragment and replicate technique

 Depicted on next slide

 Special case – asymmetric fragment-and-replicate:

 One of the relations, say r, is partitioned; any partitioning 
technique can be used.

 The other relation, s, is replicated across all the processors.

 Processor Pi then locally computes the join of ri with all of s using 
any join technique.
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Depiction of Fragment-and-Replicate Joins
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Fragment-and-Replicate Join (Cont.)

 General case: reduces the sizes of the relations at each processor.

 r is partitioned into n partitions,r0, r1, ..., r n-1;s is partitioned into m

partitions, s0, s1, ..., sm-1.

 Any partitioning technique may be used.

 There must be at least m * n processors.

 Label the processors as

 P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1.

 Pi,j computes the join of ri with sj. In order to do so, ri is replicated 

to Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i

 Any join technique can be used at each processor Pi,j.
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Fragment-and-Replicate Join (Cont.)

 Both versions of fragment-and-replicate work with any join condition, since 

every tuple in r can be tested with every tuple in s.

 Usually has a higher cost than partitioning, since one of the relations (for 

asymmetric fragment-and-replicate) or both relations (for general fragment-

and-replicate) have to be replicated.

 Sometimes asymmetric fragment-and-replicate is preferable even though 

partitioning could be used.

 E.g., say s is small and r is large, and already partitioned. It may be 

cheaper to replicate s across all processors, rather than repartition r

and s on the join attributes.
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Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:

 Assume s is smaller than r and therefore s is chosen as the build 

relation.

 A hash function h1 takes the join attribute value of each tuple in s and 

maps this tuple to one of the n processors.

 Each processor Pi reads the tuples of s that are on its disk Di, and 

sends each tuple to the appropriate processor based on hash function 

h1. Let si denote the tuples of relation s that are sent to processor Pi.

 As tuples of relation s are received at the destination processors, they 

are partitioned further using another hash function, h2, which is used 

to compute the hash-join locally. (Cont.)
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Partitioned Parallel Hash-Join (Cont.)

 Once the tuples of s have been distributed, the larger relation r is 

redistributed across the m processors using the hash function h1

 Let ri denote the tuples of relation r that are sent to processor Pi.

 As the r tuples are received at the destination processors, they are 

repartitioned using the function h2

 (just as the probe relation is partitioned in the sequential hash-join 

algorithm).

 Each processor Pi executes the build and probe phases of the hash-

join algorithm on the local partitions ri and s of  r and s to produce a 

partition of the final result of the hash-join.

 Note: Hash-join optimizations can be applied to the parallel case

 e.g., the hybrid hash-join algorithm can be used to cache some of 

the incoming tuples in memory and avoid the cost of writing them 

and reading them back in.
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Parallel Nested-Loop Join

 Assume that

 relation s is much smaller than relation r and that r is stored by 

partitioning.

 there is an index on a join attribute of relation r at each of the 

partitions of relation r.

 Use asymmetric fragment-and-replicate, with relation s being 

replicated, and using the existing partitioning of relation r.

 Each processor Pj where a partition of relation s is stored reads the 

tuples of relation s stored in Dj, and replicates the tuples to every other 

processor Pi.

 At the end of this phase, relation s is replicated at all sites that 

store tuples of relation r. 

 Each processor Pi performs an indexed nested-loop join of relation s

with the ith partition of relation r.
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Other Relational Operations

Selection   (r)

 If  is of the form ai = v, where ai is an attribute and v a value.

 If r is partitioned on ai the selection is performed at a single 

processor.

 If  is of the form l <= ai <= u  (i.e.,  is a range selection) and the 

relation has been range-partitioned on ai

 Selection is performed at each processor whose partition overlaps 

with the specified range of values.

 In all other cases: the selection is performed in parallel at all the 

processors.
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Other Relational Operations (Cont.)

 Duplicate elimination

 Perform by using either of the parallel sort techniques

 eliminate duplicates as soon as they are found during sorting.

 Can also partition the tuples (using either range- or hash-

partitioning) and perform duplicate elimination locally at each 

processor.

 Projection

 Projection without duplicate elimination can be performed as 

tuples are read in from disk in parallel.

 If duplicate elimination is required, any of the above duplicate 

elimination techniques can be used.
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Grouping/Aggregation

 Partition the relation on the grouping attributes and then compute the 

aggregate values locally at each processor.

 Can reduce cost of transferring tuples during partitioning by partly 

computing aggregate values before partitioning.

 Consider the sum aggregation operation:

 Perform aggregation operation at each processor Pi on those 

tuples stored on disk Di

 results in tuples with partial sums at each processor.

 Result of the local aggregation is partitioned on the grouping 

attributes, and the aggregation performed again at each processor 

Pi to get the final result.

 Fewer tuples need to be sent to other processors during partitioning.
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Cost of Parallel Evaluation of Operations

 If there is no skew in the partitioning, and there is no overhead due to 

the parallel evaluation, expected speed-up will be 1/n   

 If skew and overheads are also to be taken into account, the time 

taken by a parallel operation can be estimated as 

Tpart + Tasm + max (T0, T1, …, Tn-1)

 Tpart is the time for partitioning the relations

 Tasm is the time for assembling the results

 Ti is the time taken for the operation at processor Pi

 this needs to be estimated taking into account the skew, and 

the time wasted in contentions. 
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Interoperator Parallelism

 Pipelined parallelism

 Consider a join of four relations 

 r1 r2 r3 r4

 Set up a pipeline that computes the three joins in parallel

 Let P1 be assigned the computation of 

temp1 = r1 r2

 And P2 be assigned the computation of temp2 = temp1     r3

 And P3 be assigned the computation of temp2      r4

 Each of these operations can execute in parallel, sending result 

tuples it computes to the next operation even as it is computing 

further results

 Provided a pipelineable join evaluation algorithm (e.g. indexed 

nested loops join) is used
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Factors Limiting Utility of Pipeline 

Parallelism
 Pipeline parallelism is useful since it avoids writing intermediate results to 

disk

 Useful with small number of processors, but does not scale up well with 

more processors. One reason is that pipeline chains do not attain 

sufficient length.

 Cannot pipeline operators which do not produce output until all    inputs 

have been accessed (e.g. aggregate and sort)

 Little speedup is obtained for the frequent cases of skew in which        

one operator's execution cost is much higher than the others.
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Independent Parallelism

 Independent parallelism

 Consider a join of four relations 

r1 r2 r3 r4

 Let P1 be assigned the computation of 
temp1 = r1 r2

 And P2 be assigned the computation of temp2 = r3 r4

 And P3 be assigned the computation of temp1     temp2

 P1 and P2 can work independently in parallel

 P3 has to wait for input from P1 and P2

– Can pipeline output of P1 and P2 to P3, combining 
independent parallelism and pipelined parallelism

 Does not provide a high degree of parallelism

 useful with a lower degree of parallelism.

 less useful in a highly parallel system, 
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Query Optimization

 Query optimization in parallel databases is significantly more complex 
than query optimization in sequential databases.

 Cost models are more complicated, since we must take into account 
partitioning costs and issues such as skew and resource contention.

 When scheduling execution tree in parallel system, must decide:

 How to parallelize  each operation and how many processors  to 
use for it.

 What operations to pipeline, what operations to execute 
independently in parallel, and what operations to execute 
sequentially, one after the other.  

 Determining the amount of resources to allocate for each operation is 
a problem.

 E.g., allocating more processors than optimal can result in high 
communication overhead.

 Long pipelines should be avoided as the final operation may wait a lot 
for inputs, while holding precious resources
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Query Optimization (Cont.)

 The number of parallel evaluation plans from which to choose from is much 
larger than the number of sequential evaluation plans.

 Therefore heuristics are needed while optimization

 Two alternative heuristics for choosing parallel plans:

 No pipelining and inter-operation pipelining; just parallelize every 
operation across all processors. 

 Finding best plan is now much easier --- use standard optimization 
technique, but with new cost model

 Volcano parallel database popularize the exchange-operator model 

– exchange operator is introduced into query plans to partition and 
distribute tuples

– each operation works independently on local data on each 
processor, in parallel with other copies of the operation

 First choose most efficient sequential plan and then choose how best to
parallelize the operations in that plan.

 Can explore pipelined parallelism as an option 

 Choosing a good physical organization (partitioning technique) is important 
to speed up queries.
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Design of Parallel Systems

Some issues in the design of parallel systems:

 Parallel loading of data from external sources is needed in order to 

handle large volumes of incoming data.

 Resilience to failure of some processors or disks.

 Probability of some disk or processor failing is higher in a parallel 

system.  

 Operation (perhaps with degraded performance) should be 

possible in spite of failure. 

 Redundancy achieved by storing extra copy of every data item at 

another processor.
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Design of Parallel Systems (Cont.)

 On-line reorganization of data and schema changes must be 

supported.

 For example, index construction on terabyte databases can take 

hours or days even on a parallel system.

 Need to allow other processing (insertions/deletions/updates) 

to be performed on relation even as index is being constructed.

 Basic idea: index construction tracks changes and ``catches up'‘

on changes at the end.

 Also need support for on-line repartitioning and schema changes 

(executed concurrently with other processing).
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