
Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 21: Parallel Databases

http://www.db-book.com/


©Silberschatz, Korth and Sudarshan21.2Database System Concepts - 5th Edition, Aug 22,  2005.

Chapter 21: Parallel Databases

 Introduction

 I/O Parallelism

 Interquery Parallelism

 Intraquery Parallelism

 Intraoperation Parallelism

 Interoperation Parallelism

 Design of Parallel Systems



©Silberschatz, Korth and Sudarshan21.3Database System Concepts - 5th Edition, Aug 22,  2005.

Introduction

 Parallel machines are becoming quite common and affordable

 Prices of microprocessors, memory and disks have dropped 
sharply

 Recent desktop computers feature multiple processors and this 
trend is projected to accelerate

 Databases are growing increasingly large

 large volumes of transaction data are collected and stored for later 
analysis.

 multimedia objects like images are increasingly stored in 
databases

 Large-scale parallel database systems increasingly used for:

 storing large volumes of data

 processing time-consuming decision-support queries

 providing high throughput for transaction processing 
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Parallelism in Databases

 Data can be partitioned across multiple disks for parallel I/O.

 Individual relational operations (e.g., sort, join, aggregation) can be 

executed in parallel

 data can be partitioned and each processor can work 

independently on its own partition.

 Queries are expressed in high level language (SQL, translated to 

relational algebra)

 makes parallelization easier.

 Different queries can be run in parallel with each other.

Concurrency control takes care of conflicts. 

 Thus, databases naturally lend themselves to parallelism.
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I/O Parallelism

 Reduce the time required to retrieve relations from disk by partitioning

 the relations on multiple disks.

 Horizontal partitioning – tuples of a relation are divided among many disks 

such that each tuple resides on one disk.

 Partitioning techniques (number of disks = n):

Round-robin: 

Send the ith tuple inserted in the relation to disk i mod n.  

Hash partitioning:  

 Choose one or more attributes as the partitioning attributes.   

 Choose hash function h with range 0…n - 1

 Let i denote result of hash function h applied tothe partitioning attribute 

value of a tuple. Send tuple to disk i.
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I/O Parallelism (Cont.)

 Partitioning techniques (cont.):

 Range partitioning: 

 Choose an attribute as the partitioning attribute.

 A partitioning vector [vo, v1, ..., vn-2]  is chosen.

 Let v be the partitioning attribute value of a tuple. Tuples such that 

vi  vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples 

with v  vn-2 go to disk n-1.

E.g., with a partitioning vector [5,11], a tuple with partitioning attribute 

value of 2 will go to disk 0, a tuple with value 8 will go to disk 1, 

while a  tuple with value 20 will go to disk2.
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Comparison of Partitioning Techniques

 Evaluate how well partitioning techniques support the following types 

of data access:

1.Scanning the entire relation.

2.Locating a tuple associatively – point queries.

 E.g., r.A = 25.

3.Locating all tuples such that the value of a given attribute lies within a 

specified range – range queries.

 E.g.,  10  r.A < 25.
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Comparison of Partitioning Techniques (Cont.)

Round robin:

 Advantages

 Best suited for sequential scan of entire relation on each query.

 All disks have almost an equal number of tuples; retrieval work is 

thus well balanced between disks.

 Range queries are difficult to process

 No clustering -- tuples are scattered across all disks
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Comparison of Partitioning Techniques(Cont.)

Hash partitioning:

 Good for sequential access 

 Assuming hash function is good, and partitioning attributes form a 

key, tuples will be equally distributed between disks

 Retrieval work is then well balanced between disks.

 Good for point queries on partitioning attribute

 Can lookup single disk, leaving others available for answering 

other queries. 

 Index on partitioning attribute can be local to disk, making lookup 

and update more efficient

 No clustering, so difficult to answer range queries
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Comparison of Partitioning Techniques (Cont.)

 Range partitioning:

 Provides data clustering by partitioning attribute value.

 Good for sequential access

 Good for point queries on partitioning attribute: only one disk needs to 

be accessed.

 For range queries on partitioning attribute, one to a few disks may need 

to be accessed

 Remaining disks are available for other queries.

 Good if result tuples are from one to a few blocks. 

 If many blocks are to be fetched, they are still fetched from one to a 

few disks, and potential parallelism  in disk access is wasted

 Example of execution skew.
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Partitioning a Relation across Disks

 If a relation contains only a few tuples which will fit into a single disk 

block, then assign the relation to a single disk.

 Large relations are preferably partitioned across all the available 

disks.

 If a relation consists of m disk blocks and there are n disks available in 

the system, then the relation should be allocated  min(m,n) disks.
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Handling of Skew

 The distribution of tuples to disks may be skewed — that is, some 

disks have many tuples, while others may have fewer tuples.

 Types of skew:

 Attribute-value skew.

 Some values appear in the partitioning attributes of many 

tuples; all the tuples with the same value for the partitioning 

attribute end up in the same partition.

 Can occur with range-partitioning and hash-partitioning.

 Partition skew.

 With range-partitioning, badly chosen partition vector may 

assign too many tuples to some partitions and too few to 

others.

 Less likely with hash-partitioning if a good hash-function is 

chosen.
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Handling Skew in Range-Partitioning

 To create a balanced partitioning vector (assuming partitioning attribute 

forms a key of the relation):

 Sort the relation on the partitioning attribute.

 Construct the partition vector by scanning the relation in sorted order 

as follows.

 After every 1/nth of the relation has been read, the value of  the 

partitioning attribute of the next tuple is added to the partition   

vector.

 n denotes the number of partitions to be constructed.

 Duplicate entries or imbalances can result if duplicates are present in 

partitioning attributes.

 Alternative technique based on histograms used in practice
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Handling Skew using Histograms

 Balanced partitioning vector can be constructed from histogram in a 

relatively straightforward fashion

 Assume uniform distribution within each range of the histogram

 Histogram can be constructed by scanning relation, or sampling (blocks 

containing) tuples of the relation
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Handling Skew Using Virtual Processor 

Partitioning 
 Skew in range partitioning can be handled elegantly using virtual 

processor partitioning: 

 create a large number of partitions (say 10 to 20 times the number 

of processors)

 Assign virtual processors to partitions either in round-robin fashion 

or based on estimated cost of processing each virtual partition

 Basic idea:

 If any normal partition would have been skewed, it is very likely 

the skew is spread over a number of virtual partitions

 Skewed virtual partitions get spread across a number of 

processors, so work gets distributed evenly!
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Interquery Parallelism

 Queries/transactions execute in parallel with one another.

 Increases transaction throughput; used primarily to scale up a 

transaction processing system to support a larger number of 

transactions per second.

 Easiest form of parallelism to support, particularly in a shared-memory 

parallel database, because even sequential database systems support 

concurrent processing.

 More complicated to implement on shared-disk or shared-nothing 

architectures

 Locking and logging must be coordinated by passing messages 

between processors.

 Data in a local buffer may have been updated at another processor.

 Cache-coherency has to be maintained — reads and writes of data 

in buffer must find latest version of data.
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Cache Coherency Protocol

 Example of a cache coherency protocol for shared disk systems:

 Before reading/writing to a page, the page must be locked in 

shared/exclusive mode.

 On locking a page, the page must be read from disk

 Before unlocking a page, the page must be written to disk if it was 

modified.

 More complex protocols with fewer disk reads/writes exist.

 Cache coherency protocols for shared-nothing systems are similar. 

Each database page is assigned a home processor. Requests to fetch 

the page or write it to disk are sent to the home processor.
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Intraquery Parallelism

 Execution of a single query in parallel on multiple processors/disks; 

important for speeding up long-running queries.

 Two complementary forms of intraquery parallelism :

 Intraoperation Parallelism – parallelize the execution of each 

individual operation in the query.

 Interoperation Parallelism – execute the different operations in a 

query expression in parallel.

the first form scales better with increasing parallelism because

the number of tuples processed by each operation is typically more than 

the number of operations in a query
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Parallel Processing of Relational Operations

 Our discussion of parallel algorithms assumes:

 read-only queries

 shared-nothing architecture

 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1,  where disk Di is 

associated with processor Pi.

 If a processor has multiple disks they can simply simulate a single disk 

Di.

 Shared-nothing architectures can be efficiently simulated on shared-

memory and shared-disk systems.   

 Algorithms for shared-nothing systems can thus be run on shared-

memory and shared-disk systems.  

 However, some optimizations may be possible.
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Parallel Sort

Range-Partitioning Sort

 Choose processors P0, ..., Pm, where m  n -1 to do sorting.

 Create range-partition vector with m entries, on the sorting attributes

 Redistribute the relation using range partitioning

 all tuples that lie in the ith range are sent to processor Pi

 Pi stores the tuples it received temporarily on disk Di. 

 This step requires I/O and communication overhead.

 Each processor Pi sorts its partition of the relation locally.

 Each processors executes same operation (sort) in parallel with other 

processors, without any interaction with the others  (data parallelism).

 Final merge operation is trivial: range-partitioning ensures that, for 1  j  

m, the key values in processor Pi are all less than the key values in Pj.
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Parallel Sort (Cont.)

Parallel External Sort-Merge

 Assume the relation has already been partitioned among disks D0, ...,

Dn-1 (in whatever manner).

 Each processor Pi locally sorts the data on disk Di.

 The sorted runs on each processor are then merged to get the final 

sorted output.

 Parallelize the merging of sorted runs as follows:

 The sorted partitions at each processor Pi are range-partitioned 

across the processors P0, ..., Pm-1.

 Each processor Pi performs a merge on the streams as they are 

received, to get a single sorted run.

 The sorted runs on processors P0,..., Pm-1 are concatenated to get 

the final result.
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Parallel Join

 The join operation requires pairs of tuples to be tested to see if they 

satisfy the join condition, and if they do, the pair is added to the join 

output.

 Parallel join algorithms attempt to split the pairs to be tested over 

several processors.  Each processor then computes part of the join 

locally.  

 In a final step, the results from each processor can be collected 

together to produce the final result.
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Partitioned Join

 For equi-joins and natural joins, it is possible to partition the two input 

relations across the processors, and compute the join locally at each 

processor.

 Let r and s be the input relations, and we want to compute r     r.A=s.B s.

 r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and s0, 

s1, ..., sn-1.

 Can use either range partitioning or hash partitioning.

 r and s must be partitioned on their join attributes r.A and s.B), using the 

same range-partitioning vector or hash function.

 Partitions ri and si are sent to processor Pi,

 Each processor Pi locally computes ri ri.A=si.B si. Any of the standard 

join methods can be used.
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Partitioned Join (Cont.)
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Fragment-and-Replicate Join

 Partitioning not possible for some join conditions 

 e.g., non-equijoin conditions, such as r.A > s.B.

 For joins were partitioning is not applicable, parallelization  can be 
accomplished by fragment and replicate technique

 Depicted on next slide

 Special case – asymmetric fragment-and-replicate:

 One of the relations, say r, is partitioned; any partitioning 
technique can be used.

 The other relation, s, is replicated across all the processors.

 Processor Pi then locally computes the join of ri with all of s using 
any join technique.
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Depiction of Fragment-and-Replicate Joins
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Fragment-and-Replicate Join (Cont.)

 General case: reduces the sizes of the relations at each processor.

 r is partitioned into n partitions,r0, r1, ..., r n-1;s is partitioned into m

partitions, s0, s1, ..., sm-1.

 Any partitioning technique may be used.

 There must be at least m * n processors.

 Label the processors as

 P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1.

 Pi,j computes the join of ri with sj. In order to do so, ri is replicated 

to Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i

 Any join technique can be used at each processor Pi,j.
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Fragment-and-Replicate Join (Cont.)

 Both versions of fragment-and-replicate work with any join condition, since 

every tuple in r can be tested with every tuple in s.

 Usually has a higher cost than partitioning, since one of the relations (for 

asymmetric fragment-and-replicate) or both relations (for general fragment-

and-replicate) have to be replicated.

 Sometimes asymmetric fragment-and-replicate is preferable even though 

partitioning could be used.

 E.g., say s is small and r is large, and already partitioned. It may be 

cheaper to replicate s across all processors, rather than repartition r

and s on the join attributes.
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Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:

 Assume s is smaller than r and therefore s is chosen as the build 

relation.

 A hash function h1 takes the join attribute value of each tuple in s and 

maps this tuple to one of the n processors.

 Each processor Pi reads the tuples of s that are on its disk Di, and 

sends each tuple to the appropriate processor based on hash function 

h1. Let si denote the tuples of relation s that are sent to processor Pi.

 As tuples of relation s are received at the destination processors, they 

are partitioned further using another hash function, h2, which is used 

to compute the hash-join locally. (Cont.)
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Partitioned Parallel Hash-Join (Cont.)

 Once the tuples of s have been distributed, the larger relation r is 

redistributed across the m processors using the hash function h1

 Let ri denote the tuples of relation r that are sent to processor Pi.

 As the r tuples are received at the destination processors, they are 

repartitioned using the function h2

 (just as the probe relation is partitioned in the sequential hash-join 

algorithm).

 Each processor Pi executes the build and probe phases of the hash-

join algorithm on the local partitions ri and s of  r and s to produce a 

partition of the final result of the hash-join.

 Note: Hash-join optimizations can be applied to the parallel case

 e.g., the hybrid hash-join algorithm can be used to cache some of 

the incoming tuples in memory and avoid the cost of writing them 

and reading them back in.
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Parallel Nested-Loop Join

 Assume that

 relation s is much smaller than relation r and that r is stored by 

partitioning.

 there is an index on a join attribute of relation r at each of the 

partitions of relation r.

 Use asymmetric fragment-and-replicate, with relation s being 

replicated, and using the existing partitioning of relation r.

 Each processor Pj where a partition of relation s is stored reads the 

tuples of relation s stored in Dj, and replicates the tuples to every other 

processor Pi.

 At the end of this phase, relation s is replicated at all sites that 

store tuples of relation r. 

 Each processor Pi performs an indexed nested-loop join of relation s

with the ith partition of relation r.
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Other Relational Operations

Selection   (r)

 If  is of the form ai = v, where ai is an attribute and v a value.

 If r is partitioned on ai the selection is performed at a single 

processor.

 If  is of the form l <= ai <= u  (i.e.,  is a range selection) and the 

relation has been range-partitioned on ai

 Selection is performed at each processor whose partition overlaps 

with the specified range of values.

 In all other cases: the selection is performed in parallel at all the 

processors.
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Other Relational Operations (Cont.)

 Duplicate elimination

 Perform by using either of the parallel sort techniques

 eliminate duplicates as soon as they are found during sorting.

 Can also partition the tuples (using either range- or hash-

partitioning) and perform duplicate elimination locally at each 

processor.

 Projection

 Projection without duplicate elimination can be performed as 

tuples are read in from disk in parallel.

 If duplicate elimination is required, any of the above duplicate 

elimination techniques can be used.
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Grouping/Aggregation

 Partition the relation on the grouping attributes and then compute the 

aggregate values locally at each processor.

 Can reduce cost of transferring tuples during partitioning by partly 

computing aggregate values before partitioning.

 Consider the sum aggregation operation:

 Perform aggregation operation at each processor Pi on those 

tuples stored on disk Di

 results in tuples with partial sums at each processor.

 Result of the local aggregation is partitioned on the grouping 

attributes, and the aggregation performed again at each processor 

Pi to get the final result.

 Fewer tuples need to be sent to other processors during partitioning.
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Cost of Parallel Evaluation of Operations

 If there is no skew in the partitioning, and there is no overhead due to 

the parallel evaluation, expected speed-up will be 1/n   

 If skew and overheads are also to be taken into account, the time 

taken by a parallel operation can be estimated as 

Tpart + Tasm + max (T0, T1, …, Tn-1)

 Tpart is the time for partitioning the relations

 Tasm is the time for assembling the results

 Ti is the time taken for the operation at processor Pi

 this needs to be estimated taking into account the skew, and 

the time wasted in contentions. 
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Interoperator Parallelism

 Pipelined parallelism

 Consider a join of four relations 

 r1 r2 r3 r4

 Set up a pipeline that computes the three joins in parallel

 Let P1 be assigned the computation of 

temp1 = r1 r2

 And P2 be assigned the computation of temp2 = temp1     r3

 And P3 be assigned the computation of temp2      r4

 Each of these operations can execute in parallel, sending result 

tuples it computes to the next operation even as it is computing 

further results

 Provided a pipelineable join evaluation algorithm (e.g. indexed 

nested loops join) is used
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Factors Limiting Utility of Pipeline 

Parallelism
 Pipeline parallelism is useful since it avoids writing intermediate results to 

disk

 Useful with small number of processors, but does not scale up well with 

more processors. One reason is that pipeline chains do not attain 

sufficient length.

 Cannot pipeline operators which do not produce output until all    inputs 

have been accessed (e.g. aggregate and sort)

 Little speedup is obtained for the frequent cases of skew in which        

one operator's execution cost is much higher than the others.
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Independent Parallelism

 Independent parallelism

 Consider a join of four relations 

r1 r2 r3 r4

 Let P1 be assigned the computation of 
temp1 = r1 r2

 And P2 be assigned the computation of temp2 = r3 r4

 And P3 be assigned the computation of temp1     temp2

 P1 and P2 can work independently in parallel

 P3 has to wait for input from P1 and P2

– Can pipeline output of P1 and P2 to P3, combining 
independent parallelism and pipelined parallelism

 Does not provide a high degree of parallelism

 useful with a lower degree of parallelism.

 less useful in a highly parallel system, 



©Silberschatz, Korth and Sudarshan21.39Database System Concepts - 5th Edition, Aug 22,  2005.

Query Optimization

 Query optimization in parallel databases is significantly more complex 
than query optimization in sequential databases.

 Cost models are more complicated, since we must take into account 
partitioning costs and issues such as skew and resource contention.

 When scheduling execution tree in parallel system, must decide:

 How to parallelize  each operation and how many processors  to 
use for it.

 What operations to pipeline, what operations to execute 
independently in parallel, and what operations to execute 
sequentially, one after the other.  

 Determining the amount of resources to allocate for each operation is 
a problem.

 E.g., allocating more processors than optimal can result in high 
communication overhead.

 Long pipelines should be avoided as the final operation may wait a lot 
for inputs, while holding precious resources
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Query Optimization (Cont.)

 The number of parallel evaluation plans from which to choose from is much 
larger than the number of sequential evaluation plans.

 Therefore heuristics are needed while optimization

 Two alternative heuristics for choosing parallel plans:

 No pipelining and inter-operation pipelining; just parallelize every 
operation across all processors. 

 Finding best plan is now much easier --- use standard optimization 
technique, but with new cost model

 Volcano parallel database popularize the exchange-operator model 

– exchange operator is introduced into query plans to partition and 
distribute tuples

– each operation works independently on local data on each 
processor, in parallel with other copies of the operation

 First choose most efficient sequential plan and then choose how best to
parallelize the operations in that plan.

 Can explore pipelined parallelism as an option 

 Choosing a good physical organization (partitioning technique) is important 
to speed up queries.
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Design of Parallel Systems

Some issues in the design of parallel systems:

 Parallel loading of data from external sources is needed in order to 

handle large volumes of incoming data.

 Resilience to failure of some processors or disks.

 Probability of some disk or processor failing is higher in a parallel 

system.  

 Operation (perhaps with degraded performance) should be 

possible in spite of failure. 

 Redundancy achieved by storing extra copy of every data item at 

another processor.
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Design of Parallel Systems (Cont.)

 On-line reorganization of data and schema changes must be 

supported.

 For example, index construction on terabyte databases can take 

hours or days even on a parallel system.

 Need to allow other processing (insertions/deletions/updates) 

to be performed on relation even as index is being constructed.

 Basic idea: index construction tracks changes and ``catches up'‘

on changes at the end.

 Also need support for on-line repartitioning and schema changes 

(executed concurrently with other processing).
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