
Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 21: Parallel Databases

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan21.2Database System Concepts - 5th Edition, Aug 22, 2005.

Chapter 21: Parallel Databases

 Introduction

 I/O Parallelism

 Interquery Parallelism

 Intraquery Parallelism

 Intraoperation Parallelism

 Interoperation Parallelism

 Design of Parallel Systems

©Silberschatz, Korth and Sudarshan21.3Database System Concepts - 5th Edition, Aug 22, 2005.

Introduction

 Parallel machines are becoming quite common and affordable

 Prices of microprocessors, memory and disks have dropped
sharply

 Recent desktop computers feature multiple processors and this
trend is projected to accelerate

 Databases are growing increasingly large

 large volumes of transaction data are collected and stored for later
analysis.

 multimedia objects like images are increasingly stored in
databases

 Large-scale parallel database systems increasingly used for:

 storing large volumes of data

 processing time-consuming decision-support queries

 providing high throughput for transaction processing

©Silberschatz, Korth and Sudarshan21.4Database System Concepts - 5th Edition, Aug 22, 2005.

Parallelism in Databases

 Data can be partitioned across multiple disks for parallel I/O.

 Individual relational operations (e.g., sort, join, aggregation) can be

executed in parallel

 data can be partitioned and each processor can work

independently on its own partition.

 Queries are expressed in high level language (SQL, translated to

relational algebra)

 makes parallelization easier.

 Different queries can be run in parallel with each other.

Concurrency control takes care of conflicts.

 Thus, databases naturally lend themselves to parallelism.

©Silberschatz, Korth and Sudarshan21.5Database System Concepts - 5th Edition, Aug 22, 2005.

I/O Parallelism

 Reduce the time required to retrieve relations from disk by partitioning

 the relations on multiple disks.

 Horizontal partitioning – tuples of a relation are divided among many disks

such that each tuple resides on one disk.

 Partitioning techniques (number of disks = n):

Round-robin:

Send the ith tuple inserted in the relation to disk i mod n.

Hash partitioning:

 Choose one or more attributes as the partitioning attributes.

 Choose hash function h with range 0…n - 1

 Let i denote result of hash function h applied tothe partitioning attribute

value of a tuple. Send tuple to disk i.

©Silberschatz, Korth and Sudarshan21.6Database System Concepts - 5th Edition, Aug 22, 2005.

I/O Parallelism (Cont.)

 Partitioning techniques (cont.):

 Range partitioning:

 Choose an attribute as the partitioning attribute.

 A partitioning vector [vo, v1, ..., vn-2] is chosen.

 Let v be the partitioning attribute value of a tuple. Tuples such that

vi  vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples

with v  vn-2 go to disk n-1.

E.g., with a partitioning vector [5,11], a tuple with partitioning attribute

value of 2 will go to disk 0, a tuple with value 8 will go to disk 1,

while a tuple with value 20 will go to disk2.

©Silberschatz, Korth and Sudarshan21.7Database System Concepts - 5th Edition, Aug 22, 2005.

Comparison of Partitioning Techniques

 Evaluate how well partitioning techniques support the following types

of data access:

1.Scanning the entire relation.

2.Locating a tuple associatively – point queries.

 E.g., r.A = 25.

3.Locating all tuples such that the value of a given attribute lies within a

specified range – range queries.

 E.g., 10  r.A < 25.

©Silberschatz, Korth and Sudarshan21.8Database System Concepts - 5th Edition, Aug 22, 2005.

Comparison of Partitioning Techniques (Cont.)

Round robin:

 Advantages

 Best suited for sequential scan of entire relation on each query.

 All disks have almost an equal number of tuples; retrieval work is

thus well balanced between disks.

 Range queries are difficult to process

 No clustering -- tuples are scattered across all disks

©Silberschatz, Korth and Sudarshan21.9Database System Concepts - 5th Edition, Aug 22, 2005.

Comparison of Partitioning Techniques(Cont.)

Hash partitioning:

 Good for sequential access

 Assuming hash function is good, and partitioning attributes form a

key, tuples will be equally distributed between disks

 Retrieval work is then well balanced between disks.

 Good for point queries on partitioning attribute

 Can lookup single disk, leaving others available for answering

other queries.

 Index on partitioning attribute can be local to disk, making lookup

and update more efficient

 No clustering, so difficult to answer range queries

©Silberschatz, Korth and Sudarshan21.10Database System Concepts - 5th Edition, Aug 22, 2005.

Comparison of Partitioning Techniques (Cont.)

 Range partitioning:

 Provides data clustering by partitioning attribute value.

 Good for sequential access

 Good for point queries on partitioning attribute: only one disk needs to

be accessed.

 For range queries on partitioning attribute, one to a few disks may need

to be accessed

 Remaining disks are available for other queries.

 Good if result tuples are from one to a few blocks.

 If many blocks are to be fetched, they are still fetched from one to a

few disks, and potential parallelism in disk access is wasted

 Example of execution skew.

©Silberschatz, Korth and Sudarshan21.11Database System Concepts - 5th Edition, Aug 22, 2005.

Partitioning a Relation across Disks

 If a relation contains only a few tuples which will fit into a single disk

block, then assign the relation to a single disk.

 Large relations are preferably partitioned across all the available

disks.

 If a relation consists of m disk blocks and there are n disks available in

the system, then the relation should be allocated min(m,n) disks.

©Silberschatz, Korth and Sudarshan21.12Database System Concepts - 5th Edition, Aug 22, 2005.

Handling of Skew

 The distribution of tuples to disks may be skewed — that is, some

disks have many tuples, while others may have fewer tuples.

 Types of skew:

 Attribute-value skew.

 Some values appear in the partitioning attributes of many

tuples; all the tuples with the same value for the partitioning

attribute end up in the same partition.

 Can occur with range-partitioning and hash-partitioning.

 Partition skew.

 With range-partitioning, badly chosen partition vector may

assign too many tuples to some partitions and too few to

others.

 Less likely with hash-partitioning if a good hash-function is

chosen.

©Silberschatz, Korth and Sudarshan21.13Database System Concepts - 5th Edition, Aug 22, 2005.

Handling Skew in Range-Partitioning

 To create a balanced partitioning vector (assuming partitioning attribute

forms a key of the relation):

 Sort the relation on the partitioning attribute.

 Construct the partition vector by scanning the relation in sorted order

as follows.

 After every 1/nth of the relation has been read, the value of the

partitioning attribute of the next tuple is added to the partition

vector.

 n denotes the number of partitions to be constructed.

 Duplicate entries or imbalances can result if duplicates are present in

partitioning attributes.

 Alternative technique based on histograms used in practice

©Silberschatz, Korth and Sudarshan21.14Database System Concepts - 5th Edition, Aug 22, 2005.

Handling Skew using Histograms

 Balanced partitioning vector can be constructed from histogram in a

relatively straightforward fashion

 Assume uniform distribution within each range of the histogram

 Histogram can be constructed by scanning relation, or sampling (blocks

containing) tuples of the relation

©Silberschatz, Korth and Sudarshan21.15Database System Concepts - 5th Edition, Aug 22, 2005.

Handling Skew Using Virtual Processor

Partitioning
 Skew in range partitioning can be handled elegantly using virtual

processor partitioning:

 create a large number of partitions (say 10 to 20 times the number

of processors)

 Assign virtual processors to partitions either in round-robin fashion

or based on estimated cost of processing each virtual partition

 Basic idea:

 If any normal partition would have been skewed, it is very likely

the skew is spread over a number of virtual partitions

 Skewed virtual partitions get spread across a number of

processors, so work gets distributed evenly!

©Silberschatz, Korth and Sudarshan21.16Database System Concepts - 5th Edition, Aug 22, 2005.

Interquery Parallelism

 Queries/transactions execute in parallel with one another.

 Increases transaction throughput; used primarily to scale up a

transaction processing system to support a larger number of

transactions per second.

 Easiest form of parallelism to support, particularly in a shared-memory

parallel database, because even sequential database systems support

concurrent processing.

 More complicated to implement on shared-disk or shared-nothing

architectures

 Locking and logging must be coordinated by passing messages

between processors.

 Data in a local buffer may have been updated at another processor.

 Cache-coherency has to be maintained — reads and writes of data

in buffer must find latest version of data.

©Silberschatz, Korth and Sudarshan21.17Database System Concepts - 5th Edition, Aug 22, 2005.

Cache Coherency Protocol

 Example of a cache coherency protocol for shared disk systems:

 Before reading/writing to a page, the page must be locked in

shared/exclusive mode.

 On locking a page, the page must be read from disk

 Before unlocking a page, the page must be written to disk if it was

modified.

 More complex protocols with fewer disk reads/writes exist.

 Cache coherency protocols for shared-nothing systems are similar.

Each database page is assigned a home processor. Requests to fetch

the page or write it to disk are sent to the home processor.

©Silberschatz, Korth and Sudarshan21.18Database System Concepts - 5th Edition, Aug 22, 2005.

Intraquery Parallelism

 Execution of a single query in parallel on multiple processors/disks;

important for speeding up long-running queries.

 Two complementary forms of intraquery parallelism :

 Intraoperation Parallelism – parallelize the execution of each

individual operation in the query.

 Interoperation Parallelism – execute the different operations in a

query expression in parallel.

the first form scales better with increasing parallelism because

the number of tuples processed by each operation is typically more than

the number of operations in a query

©Silberschatz, Korth and Sudarshan21.19Database System Concepts - 5th Edition, Aug 22, 2005.

Parallel Processing of Relational Operations

 Our discussion of parallel algorithms assumes:

 read-only queries

 shared-nothing architecture

 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1, where disk Di is

associated with processor Pi.

 If a processor has multiple disks they can simply simulate a single disk

Di.

 Shared-nothing architectures can be efficiently simulated on shared-

memory and shared-disk systems.

 Algorithms for shared-nothing systems can thus be run on shared-

memory and shared-disk systems.

 However, some optimizations may be possible.

©Silberschatz, Korth and Sudarshan21.20Database System Concepts - 5th Edition, Aug 22, 2005.

Parallel Sort

Range-Partitioning Sort

 Choose processors P0, ..., Pm, where m  n -1 to do sorting.

 Create range-partition vector with m entries, on the sorting attributes

 Redistribute the relation using range partitioning

 all tuples that lie in the ith range are sent to processor Pi

 Pi stores the tuples it received temporarily on disk Di.

 This step requires I/O and communication overhead.

 Each processor Pi sorts its partition of the relation locally.

 Each processors executes same operation (sort) in parallel with other

processors, without any interaction with the others (data parallelism).

 Final merge operation is trivial: range-partitioning ensures that, for 1 j

m, the key values in processor Pi are all less than the key values in Pj.

©Silberschatz, Korth and Sudarshan21.21Database System Concepts - 5th Edition, Aug 22, 2005.

Parallel Sort (Cont.)

Parallel External Sort-Merge

 Assume the relation has already been partitioned among disks D0, ...,

Dn-1 (in whatever manner).

 Each processor Pi locally sorts the data on disk Di.

 The sorted runs on each processor are then merged to get the final

sorted output.

 Parallelize the merging of sorted runs as follows:

 The sorted partitions at each processor Pi are range-partitioned

across the processors P0, ..., Pm-1.

 Each processor Pi performs a merge on the streams as they are

received, to get a single sorted run.

 The sorted runs on processors P0,..., Pm-1 are concatenated to get

the final result.

©Silberschatz, Korth and Sudarshan21.22Database System Concepts - 5th Edition, Aug 22, 2005.

Parallel Join

 The join operation requires pairs of tuples to be tested to see if they

satisfy the join condition, and if they do, the pair is added to the join

output.

 Parallel join algorithms attempt to split the pairs to be tested over

several processors. Each processor then computes part of the join

locally.

 In a final step, the results from each processor can be collected

together to produce the final result.

©Silberschatz, Korth and Sudarshan21.23Database System Concepts - 5th Edition, Aug 22, 2005.

Partitioned Join

 For equi-joins and natural joins, it is possible to partition the two input

relations across the processors, and compute the join locally at each

processor.

 Let r and s be the input relations, and we want to compute r r.A=s.B s.

 r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and s0,

s1, ..., sn-1.

 Can use either range partitioning or hash partitioning.

 r and s must be partitioned on their join attributes r.A and s.B), using the

same range-partitioning vector or hash function.

 Partitions ri and si are sent to processor Pi,

 Each processor Pi locally computes ri ri.A=si.B si. Any of the standard

join methods can be used.

©Silberschatz, Korth and Sudarshan21.24Database System Concepts - 5th Edition, Aug 22, 2005.

Partitioned Join (Cont.)

©Silberschatz, Korth and Sudarshan21.25Database System Concepts - 5th Edition, Aug 22, 2005.

Fragment-and-Replicate Join

 Partitioning not possible for some join conditions

 e.g., non-equijoin conditions, such as r.A > s.B.

 For joins were partitioning is not applicable, parallelization can be
accomplished by fragment and replicate technique

 Depicted on next slide

 Special case – asymmetric fragment-and-replicate:

 One of the relations, say r, is partitioned; any partitioning
technique can be used.

 The other relation, s, is replicated across all the processors.

 Processor Pi then locally computes the join of ri with all of s using
any join technique.

©Silberschatz, Korth and Sudarshan21.26Database System Concepts - 5th Edition, Aug 22, 2005.

Depiction of Fragment-and-Replicate Joins

©Silberschatz, Korth and Sudarshan21.27Database System Concepts - 5th Edition, Aug 22, 2005.

Fragment-and-Replicate Join (Cont.)

 General case: reduces the sizes of the relations at each processor.

 r is partitioned into n partitions,r0, r1, ..., r n-1;s is partitioned into m

partitions, s0, s1, ..., sm-1.

 Any partitioning technique may be used.

 There must be at least m * n processors.

 Label the processors as

 P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1.

 Pi,j computes the join of ri with sj. In order to do so, ri is replicated

to Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i

 Any join technique can be used at each processor Pi,j.

©Silberschatz, Korth and Sudarshan21.28Database System Concepts - 5th Edition, Aug 22, 2005.

Fragment-and-Replicate Join (Cont.)

 Both versions of fragment-and-replicate work with any join condition, since

every tuple in r can be tested with every tuple in s.

 Usually has a higher cost than partitioning, since one of the relations (for

asymmetric fragment-and-replicate) or both relations (for general fragment-

and-replicate) have to be replicated.

 Sometimes asymmetric fragment-and-replicate is preferable even though

partitioning could be used.

 E.g., say s is small and r is large, and already partitioned. It may be

cheaper to replicate s across all processors, rather than repartition r

and s on the join attributes.

©Silberschatz, Korth and Sudarshan21.29Database System Concepts - 5th Edition, Aug 22, 2005.

Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:

 Assume s is smaller than r and therefore s is chosen as the build

relation.

 A hash function h1 takes the join attribute value of each tuple in s and

maps this tuple to one of the n processors.

 Each processor Pi reads the tuples of s that are on its disk Di, and

sends each tuple to the appropriate processor based on hash function

h1. Let si denote the tuples of relation s that are sent to processor Pi.

 As tuples of relation s are received at the destination processors, they

are partitioned further using another hash function, h2, which is used

to compute the hash-join locally. (Cont.)

©Silberschatz, Korth and Sudarshan21.30Database System Concepts - 5th Edition, Aug 22, 2005.

Partitioned Parallel Hash-Join (Cont.)

 Once the tuples of s have been distributed, the larger relation r is

redistributed across the m processors using the hash function h1

 Let ri denote the tuples of relation r that are sent to processor Pi.

 As the r tuples are received at the destination processors, they are

repartitioned using the function h2

 (just as the probe relation is partitioned in the sequential hash-join

algorithm).

 Each processor Pi executes the build and probe phases of the hash-

join algorithm on the local partitions ri and s of r and s to produce a

partition of the final result of the hash-join.

 Note: Hash-join optimizations can be applied to the parallel case

 e.g., the hybrid hash-join algorithm can be used to cache some of

the incoming tuples in memory and avoid the cost of writing them

and reading them back in.

©Silberschatz, Korth and Sudarshan21.31Database System Concepts - 5th Edition, Aug 22, 2005.

Parallel Nested-Loop Join

 Assume that

 relation s is much smaller than relation r and that r is stored by

partitioning.

 there is an index on a join attribute of relation r at each of the

partitions of relation r.

 Use asymmetric fragment-and-replicate, with relation s being

replicated, and using the existing partitioning of relation r.

 Each processor Pj where a partition of relation s is stored reads the

tuples of relation s stored in Dj, and replicates the tuples to every other

processor Pi.

 At the end of this phase, relation s is replicated at all sites that

store tuples of relation r.

 Each processor Pi performs an indexed nested-loop join of relation s

with the ith partition of relation r.

©Silberschatz, Korth and Sudarshan21.32Database System Concepts - 5th Edition, Aug 22, 2005.

Other Relational Operations

Selection (r)

 If  is of the form ai = v, where ai is an attribute and v a value.

 If r is partitioned on ai the selection is performed at a single

processor.

 If  is of the form l <= ai <= u (i.e.,  is a range selection) and the

relation has been range-partitioned on ai

 Selection is performed at each processor whose partition overlaps

with the specified range of values.

 In all other cases: the selection is performed in parallel at all the

processors.

©Silberschatz, Korth and Sudarshan21.33Database System Concepts - 5th Edition, Aug 22, 2005.

Other Relational Operations (Cont.)

 Duplicate elimination

 Perform by using either of the parallel sort techniques

 eliminate duplicates as soon as they are found during sorting.

 Can also partition the tuples (using either range- or hash-

partitioning) and perform duplicate elimination locally at each

processor.

 Projection

 Projection without duplicate elimination can be performed as

tuples are read in from disk in parallel.

 If duplicate elimination is required, any of the above duplicate

elimination techniques can be used.

©Silberschatz, Korth and Sudarshan21.34Database System Concepts - 5th Edition, Aug 22, 2005.

Grouping/Aggregation

 Partition the relation on the grouping attributes and then compute the

aggregate values locally at each processor.

 Can reduce cost of transferring tuples during partitioning by partly

computing aggregate values before partitioning.

 Consider the sum aggregation operation:

 Perform aggregation operation at each processor Pi on those

tuples stored on disk Di

 results in tuples with partial sums at each processor.

 Result of the local aggregation is partitioned on the grouping

attributes, and the aggregation performed again at each processor

Pi to get the final result.

 Fewer tuples need to be sent to other processors during partitioning.

©Silberschatz, Korth and Sudarshan21.35Database System Concepts - 5th Edition, Aug 22, 2005.

Cost of Parallel Evaluation of Operations

 If there is no skew in the partitioning, and there is no overhead due to

the parallel evaluation, expected speed-up will be 1/n

 If skew and overheads are also to be taken into account, the time

taken by a parallel operation can be estimated as

Tpart + Tasm + max (T0, T1, …, Tn-1)

 Tpart is the time for partitioning the relations

 Tasm is the time for assembling the results

 Ti is the time taken for the operation at processor Pi

 this needs to be estimated taking into account the skew, and

the time wasted in contentions.

©Silberschatz, Korth and Sudarshan21.36Database System Concepts - 5th Edition, Aug 22, 2005.

Interoperator Parallelism

 Pipelined parallelism

 Consider a join of four relations

 r1 r2 r3 r4

 Set up a pipeline that computes the three joins in parallel

 Let P1 be assigned the computation of

temp1 = r1 r2

 And P2 be assigned the computation of temp2 = temp1 r3

 And P3 be assigned the computation of temp2 r4

 Each of these operations can execute in parallel, sending result

tuples it computes to the next operation even as it is computing

further results

 Provided a pipelineable join evaluation algorithm (e.g. indexed

nested loops join) is used

©Silberschatz, Korth and Sudarshan21.37Database System Concepts - 5th Edition, Aug 22, 2005.

Factors Limiting Utility of Pipeline

Parallelism
 Pipeline parallelism is useful since it avoids writing intermediate results to

disk

 Useful with small number of processors, but does not scale up well with

more processors. One reason is that pipeline chains do not attain

sufficient length.

 Cannot pipeline operators which do not produce output until all inputs

have been accessed (e.g. aggregate and sort)

 Little speedup is obtained for the frequent cases of skew in which

one operator's execution cost is much higher than the others.

©Silberschatz, Korth and Sudarshan21.38Database System Concepts - 5th Edition, Aug 22, 2005.

Independent Parallelism

 Independent parallelism

 Consider a join of four relations

r1 r2 r3 r4

 Let P1 be assigned the computation of
temp1 = r1 r2

 And P2 be assigned the computation of temp2 = r3 r4

 And P3 be assigned the computation of temp1 temp2

 P1 and P2 can work independently in parallel

 P3 has to wait for input from P1 and P2

– Can pipeline output of P1 and P2 to P3, combining
independent parallelism and pipelined parallelism

 Does not provide a high degree of parallelism

 useful with a lower degree of parallelism.

 less useful in a highly parallel system,

©Silberschatz, Korth and Sudarshan21.39Database System Concepts - 5th Edition, Aug 22, 2005.

Query Optimization

 Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.

 Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

 When scheduling execution tree in parallel system, must decide:

 How to parallelize each operation and how many processors to
use for it.

 What operations to pipeline, what operations to execute
independently in parallel, and what operations to execute
sequentially, one after the other.

 Determining the amount of resources to allocate for each operation is
a problem.

 E.g., allocating more processors than optimal can result in high
communication overhead.

 Long pipelines should be avoided as the final operation may wait a lot
for inputs, while holding precious resources

©Silberschatz, Korth and Sudarshan21.40Database System Concepts - 5th Edition, Aug 22, 2005.

Query Optimization (Cont.)

 The number of parallel evaluation plans from which to choose from is much
larger than the number of sequential evaluation plans.

 Therefore heuristics are needed while optimization

 Two alternative heuristics for choosing parallel plans:

 No pipelining and inter-operation pipelining; just parallelize every
operation across all processors.

 Finding best plan is now much easier --- use standard optimization
technique, but with new cost model

 Volcano parallel database popularize the exchange-operator model

– exchange operator is introduced into query plans to partition and
distribute tuples

– each operation works independently on local data on each
processor, in parallel with other copies of the operation

 First choose most efficient sequential plan and then choose how best to
parallelize the operations in that plan.

 Can explore pipelined parallelism as an option

 Choosing a good physical organization (partitioning technique) is important
to speed up queries.

©Silberschatz, Korth and Sudarshan21.41Database System Concepts - 5th Edition, Aug 22, 2005.

Design of Parallel Systems

Some issues in the design of parallel systems:

 Parallel loading of data from external sources is needed in order to

handle large volumes of incoming data.

 Resilience to failure of some processors or disks.

 Probability of some disk or processor failing is higher in a parallel

system.

 Operation (perhaps with degraded performance) should be

possible in spite of failure.

 Redundancy achieved by storing extra copy of every data item at

another processor.

©Silberschatz, Korth and Sudarshan21.42Database System Concepts - 5th Edition, Aug 22, 2005.

Design of Parallel Systems (Cont.)

 On-line reorganization of data and schema changes must be

supported.

 For example, index construction on terabyte databases can take

hours or days even on a parallel system.

 Need to allow other processing (insertions/deletions/updates)

to be performed on relation even as index is being constructed.

 Basic idea: index construction tracks changes and ``catches up'‘

on changes at the end.

 Also need support for on-line repartitioning and schema changes

(executed concurrently with other processing).

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/

